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Abstract

Stochastic volatility models (SVMs) are widely used in finance and econometrics
for analyzing and interpreting volatility. Real financial data are often observed
to have heavy tails, which violate a Gaussian assumption and may be better
modeled using the stable distribution. However, the intractable density of the
stable distribution hinders the use of common computational methods such as
Markov chain Monte Carlo (MCMC) for parameter inference of SVMs. In this
paper, we propose a new particle Gibbs sampler as a strategy to handle SVMs
with intractable likelihoods in the approximate Bayesian computation (ABC)
setting. The proposed sampler incorporates a conditional auxiliary particle filter,
which can help mitigate the weight degeneracy often encountered when using
ABC. Simulation studies demonstrate the efficacy of our sampler for inferring
SVM parameters when compared to existing particle Gibbs samplers based on the
conditional bootstrap filter, and for inferring both SVM and stable distribution
parameters when compared to existing particle MCMC samplers. As a real data
application, we apply the proposed sampler for fitting an SVM to S&P 500 Index
time-series data during the 2008–2009 financial crisis.

Keywords: approximate Bayesian computation, financial time series, particle MCMC,
sequential Monte Carlo

1 Introduction

In the analysis of financial time series, volatility is commonly used to quantify uncer-
tainty or risk. Given a time series of observed prices {Pt}Tt=0, for t = 1, . . . , T the
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return is defined as rt ≡ log(Pt)− log(Pt−1) and the volatility (which is unobserved) is
defined as ht ≡ V ar(rt|r1:t−1). In this paper, we consider the classic stochastic volatil-
ity model (SVM) (Jacquier et al., 1994, 2004; Taylor, 2008) that has been widely used
in option pricing and portfolio management: for t = 1, . . . , T ,

log(ht) = τ + ϕ log(ht−1) + σhϵt, rt =
√
ht × Zt (1)

where log(ht) is the log-volatility, Zt and ϵt are independent noise terms, θ ≡ (τ, ϕ, σ2
h)

denotes the model parameters, and an initial distribution is assigned to h0. Given the
distributions of Zt and ϵt, the goal is to infer θ from the time series of returns r1:T .

The methods of inference available for Model (1) depend on the distributions chosen
for Zt and ϵt. When Zt and ϵt are assumed to follow standard Gaussian distributions,
the unobserved volatilities h0:T can be analytically integrated out to directly obtain
the marginal likelihood of θ, and standard techniques can be applied, e.g., maximum
likelihood estimation (MLE) in a frequentist approach (Fridman and Harris, 1998),
and Markov chain Monte Carlo (MCMC) in a Bayesian approach (Jacquier et al.,
1994). However, empirical studies suggest that a Gaussian assumption for Zt may not
adequately capture the heavy tails and skewness of financial time series (Engle and
Patton, 2001). Figure 1 illustrates this phenomenon, which plots the daily returns from
the Standard & Poor 500 (S&P 500) index for the period January 2008 to March 2009;
the corresponding normal Q-Q plot indicates that the distribution of these returns
has much heavier tails than a Gaussian. As a more flexible alternative, the so-called
stable distribution (Mandelbrot, 1963; Nolan, 1997) can be adopted for Zt instead
(Lombardi and Calzolari, 2009; Vankov et al., 2019). Stable distributions can capture
a wide range of heavy-tailedness, and also have appealing theoretical properties due
to their role in the generalized central limit theorem (Nolan, 2020); further details
are reviewed in Section 2.1. However, the stable distribution does not have a closed-
form density function; hence, the resulting likelihood of rt is analytically intractable
and more specialized methodology is needed. Moreover, the parameters governing the
heavy-tailedness and skewness of the stable distribution may also need to be estimated.
This is our setting of interest, and this paper develops a more effective method to
handle the SVM in Model (1) when Zt follows a stable distribution.

The SVM in Model (1) takes the form of a state space model (SSM). Briefly, an
SSM describes a dynamic system via a time series of unobserved variables (or hidden
states) and observations generated conditional on those variables (Kitagawa, 1998).
When the hidden states are a discrete-time Markov process (e.g., h0:T in the SVM), the
SSM is specified via the transition probability of the hidden states and the likelihood
of the observations. For Model (1), at time t we let lt(rt | ht) denote the likelihood
density and gt(ht | ht−1, θ) denote the transition density. When Zt follows a stable
distribution, the likelihood lt(rt | ht) is analytically intractable and standard MLE
or MCMC methods cannot be applied. Instead, particle Markov chain Monte Carlo
(PMCMC, Andrieu et al., 2010) is a general sampling approach that can be adapted for
inference in this setting under a Bayesian framework. Originally proposed for inference
of SSMs, PMCMC provides a class of algorithms that combine the features of MCMC
and sequential Monte Carlo (SMC, Liu and West, 2001; Storvik, 2002; Carvalho et al.,
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Fig. 1 The left panel presents the daily returns of the S&P 500 index from January 2008 to March
2009. The large fluctuations around October 2008 indicate the climax of the global financial crisis. The
right panel presents a normal Q-Q plot of these daily returns, which indicates that the distribution
of returns has much heavier tails than a Gaussian.

2010); in this context, SMC methods (also known as particle filters) are well-suited
for drawing posterior samples of an SSM’s hidden states.

To our best knowledge, PMCMC is the main type of approach for SVM parameter
inference when it is not possible to analytically integrate out h0:T (Vankov et al.,
2019), which includes our setting of interest. Let p(θ) denote the joint prior for θ.
PMCMC then targets the joint posterior of θ and h0:T in Model (1), namely

p(θ, h0:T | r1:T ) ∝ p(θ)g0(h0 | θ)
T∏

t=1

gt(ht | ht−1, θ)lt(rt | ht),

if lt(rt | ht) can be evaluated. (The corresponding version of PMCMC that bypasses
this likelihood evaluation is discussed in Section 2.) When closed-form conditional
distributions of the parameters are available, a special case of PMCMC, known as
particle Gibbs, can be implemented. As applied here, the basic strategy of particle
Gibbs alternates between sampling from p(θ | h0:T , r1:T ) and p(h0:T | θ, r1:T ) at each
iteration. With the help of conjugate priors, sampling from p(θ | h0:T , r1:T ) can be
straightforward. Sampling from p(h0:T | θ, r1:T ) can potentially be handled by SMC
as for an SSM; e.g., one might apply SMC and obtain a particle approximation of
p(h0:T | θ, r1:T ), denoted by p̂SMC(h0:T | θ, r1:T ). However, it is not valid to simply
substitute sampling from p(h0:T | θ, r1:T ) with sampling from p̂SMC(h0:T | θ, r1:T ) in
particle Gibbs, because doing so does not admit the target distribution as invariant
(Andrieu et al., 2010). To correctly embed SMC within a particle Gibbs sampler, the
form of SMC known as conditional SMC (cSMC) should be implemented instead; we
review cSMC algorithms in Section 2.2.

Approximate Bayesian computation (ABC) is a general technique that can be used
to bypass the evaluation of an intractable or expensive likelihood, if one can directly
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simulate observations from the likelihood (Marin et al., 2012). Thus, to perform infer-
ence on Model (1) with an analytically intractable lt(rt | ht), ABC may be combined
with cSMC. The basic idea is to introduce a sequence of auxiliary observations (that
are sampled from the likelihood) and then assign weights according to the “distances”
between the auxiliary observations and the actual observations; ABC-based methods
are further reviewed in Section 2.3. It is straightforward to construct ABC versions of
existing cSMC algorithms based on the bootstrap filter (BF, Gordon et al., 1993); how-
ever, in practice the particles they generate can tend to have many near-zero weights
due to large “distances”, i.e., the algorithms suffer from weight degeneracy. In the SMC
literature, specific techniques to mitigate weight degeneracy include the SMC sampler
with annealed importance sampling (Del Moral et al., 2006), weight tempering via
lookahead strategies (Lin et al., 2013), and drawing multiple descendants per particle
(Hou and Wong, 2024); however, as cSMC must be embedded within every iteration
of particle Gibbs, these techniques would be computationally expensive to apply. In
contrast, the auxiliary particle filter (APF, Pitt and Shephard, 1999) is a common
alternative to the BF that can help reduce weight degeneracy, since the resampling
step of the APF accounts for the one-step-ahead observation.

In this paper, we use the APF as a strategy to reduce weight degeneracy and
improve parameter estimation in the particle Gibbs and ABC setting. In related work,
Vankov et al. (2019) proposed an ABC-based APF that uses auxiliary observations
to assign importance weights for PMCMC. However, that ABC-based APF has only
been embedded within a particle marginal Metropolis-Hastings (PMMH) algorithm
(Andrieu et al., 2010); a PMMH algorithm entails a relatively large particle size for
reliable marginal likelihood estimation, which is computationally expensive. Therefore,
as the main contribution of this paper, we propose to embed an ABC-based APF
within a particle Gibbs sampler. We show that our proposed sampler satisfies the
form of cSMC, and thus admits the target posterior distribution as invariant. We then
perform inference on Model (1) when Zt is assumed to follow the stable distribution.
Simulation results indicate that our particle Gibbs sampler often outperforms existing
ones based on the BF algorithm, given known stable distribution parameters. To
handle the more general inference question where the stable distribution parameters
are also unknown, we show how our proposed particle Gibbs sampler can be extended
to incorporate a Metropolis-Hastings step. Simulation results also support the efficacy
of our extended particle Gibbs sampler compared to the PMMH (Andrieu et al., 2010)
and the single filter particle Metropolis-within-Gibbs (SF-PMwG) algorithms (Vankov
et al., 2019) when estimating the SVM and stable distribution parameters together.

The paper is organized as follows: in Section 2, we review ABC and particle
Gibbs methods, and present the proposed ABC-based particle Gibbs sampler with a
conditional auxiliary particle filter (ABC-PG-cAPF). In Section 3, we illustrate the
effectiveness of the proposed sampler for inference of Model (1) with the stable distri-
bution. In Section 4, we present a real data application by fitting an SVM to S&P 500
daily returns during the 2008–2009 financial crisis. In Section 5, we briefly summarize
the paper and its contributions and discuss some potential future directions.
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2 Methodology

2.1 Model setup

Returning to the SVM in Model (1), we begin by reviewing relevant properties of the
stable distribution (Nolan, 2020). We denote Z ∼ SD(α, β, γ, δ) if Z follows a stable
distribution with parameters α ∈ (0, 2] for heavy-tailedness, β ∈ [−1, 1] for skewness,
γ ∈ (0,∞) for scale and δ ∈ (−∞,∞) for location. Z is defined via its characteristic
function

ψZ(t) =


exp

(
−γα|t|α

[
1 + iβ sign(t) tan

(πα
2

){
(γ|t|)1−α − 1

}]
+ iδt

)
if α ̸= 1

exp

(
−γ|t|

{
1 +

2

π
iβ sign(t) log(γ|t|)

}
+ iδt

)
if α = 1.

Its corresponding density function, fZ(z) = 1
2π

∫∞
−∞ ψZ(t) exp(−izt)dt, does not

have an analytical form in general; some basic facts are that if α > 1, E[Z] =
δ−βγ tan(πα/2) (and undefined otherwise); if α < 2, V ar(Z) = ∞ (Mandelbrot, 1963;
Nolan, 1997, 2020). Evaluation of fZ(z) is analytically impossible in general, and only
expensive approximations are available via the fast Fourier transform (Mittnik et al.,
1999), numerical integration (Nolan, 1997, 1999) and MCMC (Lemke et al., 2015);
however, it is feasible to simulate realizations of Z according to ψZ(t) based on the
work of Kanter (1975) and Chambers et al. (1976). In this paper, we fix γ = 1 and
δ = 0 following Vankov et al. (2019) and use the R package stabledist (Wuertz et al.,
2016) for generating random draws of Z.

Our model of interest is thus the SVM specified in (1) with ϵt ∼ N(0, 1) and
Zt ∼ SD(α, β, 1, 0) for t = 1, . . . , T , all independent. We also set h0 ∼ LN(τ/(1 −
ϕ), σ2

h/(1 − ϕ2)) according to the stationarity of the log-volatility process, with LN
denoting the log-normal distribution. The goal is to infer the parameters θ = (τ, ϕ, σ2

h)
and ζ = (α, β) given a time series of returns r1:T . To simplify exposition of the
algorithms, we first focus on θ (treating ζ is known) in what follows; then, we return
to the problem of jointly estimating (θ, ζ) in Section 2.5.

We take a Bayesian approach to inference and assign conjugate inverse-gamma
(IG) and normal priors for θ: σ2

h ∼ IG(a0, b0) where a0 and b0 respectively denote the
shape and rate of the inverse-gamma distribution, and (τ, ϕ) | σ2

h ∼ N(µ0, σ
2
hΛ

−1
0 )

with |ϕ| < 1, i.e., the joint prior for θ is a truncated normal–inverse Gamma with
hyperparameters a0, b0,µ0,Λ0, which we denote as NIG(a0, b0,µ0,Λ0); the truncated
support for ϕ ensures the required second-order stationarity of the log-volatility pro-
cess (Jacquier et al., 2004). The conjugacy of these priors follows from the results of
Bayesian linear regression, i.e., by defining

X =

1 log(h0)
...

...
1 log(hT−1)

 and y =

 log(h1)
...

log(hT )

 ,
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then p(θ | h0:T , r1:T ) = p(θ | h0:T ) is a truncated NIG(aT , bT ,µT ,ΛT ) with |ϕ| < 1,
where

ΛT =
(
XTX+Λ0

)
, µT = Λ−1

T

(
Λ0µ0 +XTy

)
,

aT = a0 +
T

2
, bT = b0 +

1

2

(
yTy + µT

0 Λ0µ0 − µT
TΛTµT

)
.

Thus, a Gibbs sampler update of θ only depends on these sufficient statistics. The
choice of hyperparameters could be informed by previous empirical studies (Kim et al.,
1998; Yang et al., 2018; Vankov et al., 2019), or set to resemble a flat (Gelman et al.,
2014) or weakly informative prior (Jacquier et al., 1994, 2004).

2.2 Particle Gibbs for the SVM with tractable likelihoods

In the SVM context, a particle Gibbs sampler alternates between sampling from
p(θ | h0:T , r1:T ) and p(h0:T | θ, r1:T ). As described in the Introduction, sampling from
p(h0:T | θ, r1:T ) requires the use of conditional SMC algorithms. The basic idea of
cSMC is to take an input trajectory (i.e., a sample for h0:T ) as a reference and produce
an output trajectory via SMC-style propagation; furthermore, cSMC accounts for all
random variables generated during propagation via an extended target distribution of
higher dimension (Chopin and Singh, 2015). The steps for a sweep of particle Gibbs
then consist of (i) updating the parameters based on the input trajectory, (ii) generat-
ing new trajectories based on the updated parameters and input trajectory, and (iii)
selecting an output trajectory as input for the next iteration (Andrieu et al., 2010).
The use of cSMC in particle Gibbs guarantees the target distribution is admitted as
the invariant density. Here, we briefly review two existing cSMC algorithms that are
applicable within particle Gibbs when the likelihood lt(rt | ht) can be computed.

The first is the conditional bootstrap filter (cBF, Andrieu et al., 2010) as sum-
marized in Algorithm 1. A key feature is that it preserves the input trajectory h∗0:T
throughout propagation and resampling; holding h∗0:T intact, N − 1 new trajectories
are generated “conditional on” h∗0:T in SMC fashion; finally one of the N trajecto-
ries (i.e., among the input trajectory and the N − 1 generated trajectories) is selected
to be the new input trajectory for the next iteration. As shown in Algorithm 1, for

any particle h
(n)
t with n ∈ {1, . . . , N} simulated at step t, we denote the index of the

ancestor particle of h
(n)
t by a

(n)
t−1, i.e., h

(n)
t is propagated from h

(a
(n)
t−1)

t−1 . For simplicity,

let A
(n)
t,t = n, A

(n)
t−1,t = a

(n)
t−1 and A

(n)
t−l,t = a

(A
(n)
t−l+1,t)

t−l for 2 ≤ l ≤ t; then the n-th trajec-

tory can be written as h
(n)
0:T = (h

(A
(n)
0,T )

0 , h
(A

(n)
1,T )

1 , . . . , h
(A

(n)
T,T )

T ) after t = T propagation
and resampling steps.

The second is the conditional bootstrap filter with ancestor sampling (cBFAS,
Lindsten et al., 2014) as summarized in Algorithm 2. The cBF keeps the input trajec-

tory h∗0:T intact, i.e., A
(N)
t,T = N , and preserved throughout for all t ∈ {0, . . . , T −1}, so

the early parts of generated trajectories may tend to closely resemble (or be identical
to) the input trajectory, which when too extreme is known as path degeneracy. The
key idea of cBFAS is to stochastically perturb the input trajectory by breaking it into
pieces via ancestor sampling. Ancestor sampling, as presented in Algorithm 2, takes
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Algorithm 1: Conditional Bootstrap Filter

input: observations r1:T , particle size N , input trajectory h∗0:T , transition
density gt, likelihood lt;

draw h
(n)
0 ∼ g0(h0) for n = 1, . . . , N − 1 and set h

(N)
0 = h∗0;

w
(n)
0 = 1

N for n = 1, . . . , N ;
for t in 1:T do

draw index a
(n)
t−1 from {(n,w(n)

t−1)}Nn=1 for n = 1, . . . , N − 1;

set index a
(N)
t−1 = N ;

draw h
(n)
t ∼ gt(ht | h

(a
(n)
t−1)

t−1 ) for n = 1, . . . , N − 1 and set h
(N)
t = h∗t ;

w
(n)
t = lt(rt | h(n)t ) for n = 1, . . . , N ;

end

draw index b from {(n,w(n)
T )}Nn=1;

return h
(b)
0:T ;

Algorithm 2: Conditional Bootstrap Filter with Ancestor Sampling

input: observations r1:T , particle size N , input trajectory h∗0:T , transition
density gt, likelihood lt;

draw h
(n)
0 ∼ g0(h0) for n = 1, . . . , N − 1 and set h

(N)
0 = h∗0;

w
(n)
0 = 1

N for n = 1, . . . , N ;
for t in 1:T do

draw index a
(n)
t−1 from {(n,w(n)

t−1)}Nn=1 for n = 1, . . . , N − 1;

draw index a
(N)
t−1 from {(n,w(n)

t−1gt(h
∗
t | h(n)t−1))}Nn=1;

draw h
(n)
t ∼ gt(ht | h

(a
(n)
t−1)

t−1 ) for n = 1, . . . , N − 1 and set h
(N)
t = h∗t ;

w
(n)
t = lt(rt | h(n)t ) for n = 1, . . . , N ;

end

draw index b from {(n,w(n)
T )}Nn=1;

return h
(b)
0:T ;

A
(N)
t,T to be stochastic, so the input trajectory can be partially replaced by other gen-

erated trajectories at each step t. Consequently, the input trajectory interacts much
more with the other trajectories (Svensson et al., 2015), which can help cBFAS miti-
gate path degeneracy while maintaining the target distribution as invariant (Lindsten
et al., 2014; Svensson et al., 2015).

2.3 Review of ABC methods and ABC-SMC methods

To briefly review ABC methods, consider observations r and parameters θ where the
likelihood l(r | θ) is intractable and expensive to approximate. Consequently, the
posterior p(θ | r) ∝ p(θ)l(r | θ) is also intractable. In this setting, ABC can be used
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for inference of θ if sampling from l(· | θ) is straightforward. The basic idea of ABC
methods is to construct an approximation to the posterior with the help of auxiliary
observations (denoted by u) and an ABC kernel (denoted by Kϵ(r | u)), which may
be interpreted from the perspective of model error (Wilkinson, 2013). The simplest
example of an ABC method is a likelihood-free rejection sampling algorithm with a
uniform kernel (i.e., Kϵ(r | u) ∝ 1u−ϵ<r<u+ϵ for a chosen ϵ > 0) that implements the
following steps: (1) sample a candidate θ∗ from the prior p(θ); (2) sample a realization
u from l(u | θ∗); (3) accept (θ∗, u) if |r − u| < ϵ. Then accepted samples of (θ∗, u)
follow the density defined by pϵ(θ, u | r) ∝ p(θ)l(u | θ)Kϵ(r | u), and the marginal
density pϵ(θ | r) can be viewed as the ABC approximation of p(θ | r). In practice,
Gaussian kernels (i.e., Kϵ(r | u) ∝ exp [−(r − u)2/(2ϵ2)]) are more commonly used
than uniform ones (Nakagome et al., 2013; Park et al., 2016; Beaumont, 2019). It is

clear that pϵ(θ | r) d−→ p(θ | r) as ϵ → 0 and pϵ(θ | r) d−→ p(θ) as ϵ → ∞. Therefore, an
ABC kernel with a small ϵ can lead to many near-zero weights of generated candidates
(θ∗, u) (or more rejected samples), while a larger ϵ can lead to more uniform weights
(or more accepted samples); however, the accuracy of the ABC approximation will
decrease as a tradeoff.

For the SVM with intractable likelihoods, we can similarly construct the ABC
approximation pϵ(h0:T , u1:T | r1:T , θ) of the corresponding extended distribution and
sample from it using an SMC algorithm; this is known as ABC-SMC (Peters et al.,
2012). Thus, the target distribution of ABC-SMC involves the auxiliary observations
u1:T for evaluating importance weights and has the form

pϵ(h0:T , u1:T | r1:T , θ) ∝ g0(h0 | θ)
T∏

t=1

gt(ht | ht−1, θ)Kϵ(rt | ut)lt(ut | ht). (2)

To sample from (2), Vankov et al. (2019) proposed an ABC-based APF, which is
summarized in Algorithm 3 and applicable within a particle Metropolis-Hastings
algorithm. The computation of the tempered weights {w̃t−1}Nn=1, i.e., the adjusted
importance weights that incorporate the one-step-ahead observation rt, requires an
intractable integration, namely

w̃
(n)
t−1 = w

(n)
t−1p(rt | h

(n)
t−1) = w

(n)
t−1

∫ ∫
Kϵ(rt | ut)lt(ut | ht)gt(ht | h(n)t−1)dhtdut (3)

where the double integral does not have a closed form; Vankov et al. (2019) suggest
approximating it with a more heavy-tailed distribution such as a t-class distribution.

Within a particle Gibbs sampler, however, Algorithm 3 cannot be directly used
(recall that particle Gibbs requires a cSMC setup to admit the target distribution as
invariant). Thus, in the following we propose a new ABC-based APF, which we call the
ABC-based conditional auxiliary particle filter (ABC-cAPF), that can be embedded
within a particle Gibbs sampler.
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Algorithm 3: ABC-based Auxiliary Particle Filter

input: observations r1:T , particle size N , transition density gt, likelihood lt;

draw h
(n)
0 ∼ g0(h0) for n = 1, . . . , N ;

set w
(n)
0 = 1

N for n = 1, . . . , N ;
for t in 1:T do

w̃
(n)
t−1 = w

(n)
t−1

∫ ∫
Kϵ(rt | ut)lt(ut | ht)gt(ht | h(n)t−1)dhtdut for n = 1, . . . , N ;

draw index a
(n)
t−1 from {(n, w̃(n)

t−1)}Nn=1;

draw h
(n)
t ∼ gt(ht | h

(a
(n)
t−1)

t−1 ) for n = 1, . . . , N ;

draw u
(n)
t ∼ lt(ut | h(n)t ) for n = 1, . . . , N ;

w
(n)
t =

w
(a

(n)
t−1

)

t−1

w̃
(a

(n)
t−1

)

t−1

Kϵ(rt | u(n)t )

/∑N
n=1

w
(a

(n)
t−1

)

t−1

w̃
(a

(n)
t−1

)

t−1

Kϵ(rt | u(n)t ) for n = 1, . . . , N ;

end

draw index b from {(n,w(n)
T )}Nn=1;

return h
(b)
0:T ;

2.4 Likelihood-free ABC-based cSMC for the SVM

Now we consider the SVM with stable distribution as presented in Section 2.1. In the
ABC setting with a chosen kernel Kϵ, Model (1) can be re-expressed as

log(ht) = τ + ϕ log(ht−1) + σhϵt, ut =
√
ht × Zt, rt ∼ Kϵ(· | ut) (4)

with ϵt ∼ N(0, 1) and Zt ∼ SD(α, β, 1, 0) all independent for t = 1 . . . , T , and
h0 ∼ LN(τ/(1− ϕ), σ2

h/(1− ϕ2)). Here, each ht, t = 1 . . . , T corresponds to an auxil-
iary observation ut for importance weight calculation according to Kϵ. The extended
posterior distribution of interest is then

pϵ(θ, h0:T , u1:T | r1:T ) ∝ p(θ)g0(h0 | θ)
T∏

t=1

gt(ht | ht−1, θ)Kϵ(rt | ut)lt(ut | ht), (5)

and the goal is to sample from (5) in a likelihood-free manner, i.e., without computing
lt. We shall focus on the particle Gibbs case, and develop ABC-based algorithms to
sample from (5) that alternate between sampling from p(θ | h0:T , u1:T , r1:T ) = p(θ |
h0:T ) and pϵ(h0:T , u1:T | r1:T , θ).

The cBF and cBFAS algorithms can be applied in the ABC setting with slight

modifications: in the step where we draw each h
(n)
t ∼ gt(ht | h(a

(n)
t−1)

t−1 ), we also draw

an auxiliary observation u
(n)
t from lt(ut | h(n)t ) and then assign the importance weight

w
(n)
t = Kϵ(rt | u(n)t ) for the particle (h

(n)
t , u

(n)
t ). We shall call these algorithms the

ABC-based conditional bootstrap filter (ABC-cBF) and ABC-based conditional boot-
strap filter with ancestor sampling (ABC-cBFAS), respectively. However, these two
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algorithms can encounter severe weight degeneracy in practice, if we choose a small ϵ
in the ABC kernel to obtain an accurate approximation of the true target distribution.
Thus, in the following we also propose a novel ABC-based cSMC algorithm using the
auxiliary particle filter as the building block.

We shall call this third algorithm the ABC-based conditional auxiliary particle
filter (ABC-cAPF), as presented in Algorithm 4. To initialize the ABC-cAPF at t = 0,

N−1 particles, {h(n)0 }N−1
n=1 , are sampled from the log-normal density g0(h0|θ) and h(N)

0

is assigned the initial log-volatility of the input trajectory. Then after the (t − 1)-th
propagation step (t = 1, . . . , T ), the N -th particle is set to be the input trajectory

h∗0:t−1 and the remaining N−1 particles {(h(n)0:t−1, u
(n)
1:t−1)}

N−1
n=1 will have been generated

with weights that satisfy

w
(n)
t−1 ∝ g0(h

(A
(n)
0,t−1)

0 )

t−1∏
s=1

Kϵ(rs | u
(A

(n)
s,t−1)

s )ls(u
(A

(n)
s,t−1)

s | h(A
(n)
s,t−1)

s )gs(h
(A

(n)
s,t−1)

s | h(A
(n)
s−1,t−1)

s−1 )

for n = 1, . . . , N − 1. Following the concept of properly weighted particles in SMC
(Liu, 2001), this weight ensures that the set of N − 1 generated particles is properly
weighted with respect to pϵ(h0:t−1, u1:t−1 | r1:t−1, θ). As an important feature of the
APF (Pitt and Shephard, 1999) when propagating the particles from t − 1 to t, the

tempered weights w̃
(n)
t−1 defined in (3) are computed and utilized. In the following, we

propose a different way of approximating the double integral in (3) that more directly
incorporates ht−1 into the variability of rt.

Specifically, since rt =
√
ht×Zt, using a standard Cauchy random variable ZCauchy

to approximate Zt leads to the relation log(r2t ) = log(ht) + log(Z2
Cauchy), where

E{log(r2t ) | ht−1} = τ + ϕ log(ht−1) and V ar{log(r2t ) | ht−1} = σ2
h + π2. Then by

approximating log(r2t ) as a linear combination of log(ht−1) and log(Z2
Cauchy) to match

this conditional mean and variance, we obtain log(Z2
Cauchy) =

√
π2

σ2
h+π2 {log(r2t )− τ −

ϕ log(ht−1)}; in practice, π2

σ2
h+π2 ≈ 1 which we set as 1 for simplicity. This leads to an

approximation p̃(rt | ht−1) of p(rt | ht−1) via a scaled Cauchy distribution with density

p̃(rt | ht−1) =
exp {−0.5(τ + ϕ log(ht−1))}

π [1 + r2t exp {−(τ + ϕ log(ht−1))}]
.

Note that the quality of the integral approximation in (3) does not influence the
validity of ABC-cAPF; however, the tempered weights should cover the high-density
regions of the true importance weights for a more efficient algorithm.

For t = 1, . . . , T , resampling and propagation are implemented with the tempered
weights, but otherwise similar to the cBF: (i) resample the first N − 1 particles from

{(h(n)0:t−1, u
(n)
1:t−1)}Nn=1 proportional to the tempered weights {w̃(n)

t−1}Nn=1 while leaving
the N -th particle intact as the input trajectory; (ii) propagate the resampled particles
as in the cBF; (iii) compute the importance weights of the propagated particles so
that cAPF targets the same density as cBF; specifically, we set the weight of the N -th
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Algorithm 4: ABC-based Conditional Auxiliary Particle Filter

input: observations r1:T , particle size N , input trajectory h∗0:T , transition
density gt, likelihood lt;

draw h
(n)
0 ∼ g0(h0) for n = 1, . . . , N − 1 and set h

(N)
0 = h∗0;

w
(n)
0 = 1

N for n = 1, . . . , N ;
for t in 1:T do

w̃
(n)
t−1 = w

(n)
t−1p̃(rt | h

(n)
t−1) for n = 1, . . . , N ;

draw index a
(n)
t−1 from {(n, w̃(n)

t−1)}Nn=1 for n = 1, . . . , N − 1 and set index

a
(N)
t−1 = N ;

draw h
(n)
t ∼ gt(ht | h

(a
(n)
t−1)

t−1 ) for n = 1, . . . , N − 1 and set h
(N)
t = h∗t ;

draw u
(n)
t ∼ lt(ut | h(n)t ) for n = 1, . . . , N ;

w
(n)
t = (N − 1)× w

(a
(n)
t−1

)

t−1

w̃
(a

(n)
t−1

)

t−1

/∑N−1
n=1

w
(a

(n)
t−1

)

t−1

w̃
(a

(n)
t−1

)

t−1

×Kϵ(rt | u(n)t ) for

n = 1, . . . , N − 1 and w
(N)
t = Kϵ(rt | u(n)t );

normalize weights {w(n)
t }Nn=1;

end

draw index b from {(n,w(n)
T )}Nn=1;

return h
(b)
0:T ;

Algorithm 5: ABC-based Particle Gibbs with the Conditional Auxiliary
Particle Filter (ABC-PG-cAPF)

input: observations r1:T , particle size N , burn-in size I, sample size J ;
sample θ[0] = (τ [0], ϕ[0], σ2

h[0]) from NIG(a0, b0,µ0,Λ0);
sample h∗t [0] from LN(τ [0]/(1− ϕ[0]), σ2

h[0]/(1− ϕ[0]2)) for all t;
for k in 1:(I + J) do

run Algorithm 4 with θ[k − 1] and h∗0:T [k − 1] and output h∗0:T [k];
update the sufficient statistics with h∗0:T [k];
sample θ[k] from the posterior NIG(aT , bT ,µT ,ΛT );

end
return θ[(I + 1) : J ];

particle to be the same as that in cBF, and then re-scale and normalize the weights
of the other N − 1 particles accordingly.

Each of the three algorithms, i.e., ABC-cBF, ABC-cBFAS, and ABC-cAPF, can
be combined with a Gibbs sampler for the parameters p(θ | h0:T , u1:T , r1:T ) to con-
struct particle Gibbs samplers for (5). We call these samplers the ABC-based particle
Gibbs with ABC-cBF (ABC-PG-cBF), ABC-based particle Gibbs with ABC-cBFAS
(ABC-PG-cBFAS), and ABC-based particle Gibbs with the conditional auxiliary par-
ticle filter (ABC-PG-cAPF), respectively. Algorithm 5 shows how the ABC-cAPF is
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embedded within the particle Gibbs sampler: each Gibbs sweep uses the ABC-cAPF
to draw an output trajectory for h0:T (given the current draw of θ and the input
trajectory), and then draws an updated θ from its closed-form NIG conditional pos-
terior (given the output trajectory, which becomes the input trajectory for the next
iteration). The ABC-PG-cBF and ABC-PG-cBFAS samplers are constructed analo-
gously. To initialize the particle Gibbs sampler, we draw parameters from p(θ) and
an input trajectory h∗0:T from the corresponding log-normal distribution given those
parameters.
Proposition 1. The proposed particle Gibbs sampler (ABC-PG-cAPF in Algorithm
5) admits the target distribution, i.e., the posterior distribution pϵ(h0:T , u1:T , θ | r1:T )
in (5), as the invariant density under some mild assumptions.

Proof. See Section S1 of the Supplementary Material.

2.5 Extended ABC-PG-cAPF for estimating SVM and stable
distribution parameters

We now turn to the more general inference problem of estimating both the SVM
parameters θ = (τ, ϕ, σ2

h) and stable distribution parameters ζ = (α, β), as consid-
ered in Vankov et al. (2019). The proposed ABC-PG-cAPF can be extended for this
purpose; such an extension is intuitively straightforward by appending ζ so that the
parameter vector becomes (θ, ζ). However, as ζ is associated with the intractable stable
distribution, no conjugacy is available for ζ and its Gibbs update needs to be han-
dled via an ABC-based Metropolis-Hastings (MH) kernel. To achieve this, each sweep
of particle Gibbs now consists of three steps: (i) update h0:T via ABC-cAPF condi-
tional on θ and ζ (via Algorithm 4); (ii) update θ conditional on h0:T (via the NIG
posterior, as shown in Algorithm 5); (iii) update ζ conditional on h0:T using an ABC-
based MH kernel. The overall steps of this extended ABC-PG-cAPF are summarized
in Algorithm 7; next, we consider the details of step (iii).

Let πζ(·) denote the prior for ζ, then the Gibbs update for ζ targets p(ζ |
r1:T , h

∗
0:T , θ

∗), where h∗0:T and θ∗ denote the current draws of h0:T and θ, respectively.
Since ζ and θ are conditionally independent given h0:T , we have

p(ζ | r1:T , h∗0:T , θ∗) = p(ζ | r1:T , h∗0:T )
∝ p(r1:T | ζ, h∗0:T )p(ζ | h∗0:T )
= p(r1:T | ζ, h∗0:T )πζ(ζ)

where the last equality follows from the prior independence of ζ and h0:T . Using the
conditional independence of the observations, we obtain

p(ζ | r1:T , h∗0:T , θ∗) ∝ πζ(ζ)

T∏
t=1

lt(rt | ζ, h∗t ) = πζ(ζ)

T∏
t=1

l∗t (r
∗
t | ζ), (6)

where r∗t = rt/
√
h∗t and l∗t (r

∗
t | ζ) is the density of the stable distribution with

parameter ζ. As seen from Model (1), {r∗t }
T
t=1 are T independent and identically
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distributed (IID) stable variables with parameter ζ. Since l∗t (r
∗
t | ζ) is also intractable,

we employ an ABC approximation to (6) via

pϵζ (ζ, u
∗
1:T | r1:T , h∗0:T , θ∗) ∝ πζ(ζ)Kϵζ {H(r∗1:T ) | H(u∗1:T )}

T∏
t=1

l∗t (u
∗
t | ζ),

where the auxiliary variables u∗1:T are generated from
∏T

t=1 l
∗
t (u

∗
t | ζ), Kϵζ is a chosen

ABC kernel with tolerance ϵζ , and H is a set of summary statistics. A MH kernel
that targets this ABC posterior is therefore given by Algorithm 6, where Q(· | ·) is a
proposal distribution for updating ζ.

The summary statistics H should be chosen to distinguish between stable distribu-
tion samples drawn with different ζ. Following the work of McCulloch (1986), we use

the set of three statistics defined by H(u∗1:T ) =
(

Q95%–Q5%

Q75%−Q25%
, Q95%+Q5%−2Q50%

Q95%–Q5%
, Q50%

)
,

where Qq is the empirical q-th quantile of u∗1:T . The first two are location-invariant
statistics proposed by McCulloch (1986) in developing simple estimators for the sta-
ble distribution parameters (α, β) that are valid for 0.5 < α ≤ 2; since α is much
larger than 0.5 for financial data in practice (Kabašinskas et al., 2009), we may
impose α > 0.5 as a reasonable restriction via the prior. We include the median as an
additional statistic that further informs the skewness of the distribution. As in Algo-
rithm 4, we adopt a Gaussian ABC kernel for Kϵζ , i.e., Kϵζ {H(r∗1:T ) | H(u∗1:T )} ∝
exp

{
−∥H(r∗1:T )−H(u∗1:T )∥

2
2 /(2ϵ

2
ζ)
}
, where ∥·∥2 denotes the l2-norm. Note that the

ABC tolerance ϵζ in Algorithm 6 is distinct from ϵ in Algorithm 4; in Algorithm 6,
ϵζ should be tailored to the scale of the summary statistics H to yield an acceptable
approximation. In our experience, a reasonable choice is ϵζ = 0.05 for the H selected
above.

This extended ABC-PG-cAPF algorithm has notable differences compared to the
SF-PMwG algorithm proposed in Vankov et al. (2019). SF-PMwG provides a solution
to the sampling problem by jointly updating (ζ, σ2

h, h0:T ) via a MH step, followed by
Gibbs steps to update τ and ϕ. When carrying out the MH step, SF-PMwG proposes
a trajectory h0:T and estimates the marginal likelihood of the observations via ABC-
APF (Algorithm 3). An estimate of the marginal likelihood is required for computing
the MH acceptance probability in SF-PMwG, and a relatively large particle size N
is needed for a reliable estimate, which is computationally expensive. In contrast, the
extended ABC-PG-cAPF algorithm handles the same model in a different manner: it
updates θ via a closed-form Gibbs step, h0:T via the ABC-cAPF, and ζ via a MH step.
The MH step for ζ within our algorithm does not require running SMC; only a simple
ABC approximation is needed, because our MH update targets the distribution of ζ
conditional on θ and h0:T . Therefore, for each complete Gibbs sweep of the posterior
in the extended ABC-PG-cAPF, only one pass of the ABC-cAPF is needed, which
is significantly cheaper. The ABC-cAPF can be run with a much smaller particle
size than ABC-APF, since ABC-cAPF only updates the trajectory h0:T and does not
estimate the marginal likelihood.
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Algorithm 6: Metropolis-Hastings Kernel for Updating ζ

input: observations r1:T , ζ
∗, auxiliary variables u∗1:T , input trajectory h

∗
0:T ,

prior πζ , summary statistics H, proposal kernel Q, ABC Kernel Kϵζ ;

initialization: r∗1:T = (r1/
√
h∗1, . . . , rT /

√
h∗T );

sample a proposal ζ∗∗ from Q(ζ | ζ∗);
draw u∗∗1:T ∼

∏T
t=1 l

∗
t (u

∗
t | ζ∗∗);

compute R = min

{
1,

Kϵζ
{H(r∗1:T )|H(u∗∗

1:T )}πζ(ζ
∗∗)Q(ζ∗|ζ∗∗)

Kϵζ{H(r∗1:T )|H(u∗
1:T )}πζ(ζ∗)Q(ζ∗∗|ζ∗)

}
;

if U ∼ Unif [0, 1] < R then
return (ζ∗∗, u∗∗1:T );

end
else

return (ζ∗, u∗1:T );
end

Algorithm 7: Extended ABC-PG-cAPF for (θ, ζ)

input: observations r1:T , particle size N , burn-in size I, sample size J ;
sample θ[0] = (τ [0], ϕ[0], σ2

h[0]) from NIG(a0, b0,µ0,Λ0);
sample h∗t [0] from LN(τ [0]/(1− ϕ[0]), σ2

h[0]/(1− ϕ[0]2)) for all t;

sample ζ[0] from πζ(ζ) and draw u∗1:T [0] ∼
∏T

t=1 l
∗
t (u

∗
t | ζ[0]);

for k in 1:(I + J) do
run Algorithm 4 with θ[k − 1], ζ[k − 1] and h∗0:T [k − 1] and output h∗0:T [k];
update the sufficient statistics for θ with h∗0:T [k] and sample θ[k] from the
posterior NIG(aT , bT ,µT ,ΛT );
run Algorithm 6 with ζ[k − 1], u∗1:T [k − 1] and h∗0:T [k] and output ζ[k],
u∗1:T [k];

end
return θ[(I + 1) : J ], ζ[(I + 1) : J ];

3 Simulation study

In this section, we implement two experiments. In Section 3.1, we assess the efficacy of
the proposed ABC-cAPF sampler by comparing it with the other ABC-based cSMC
methods for estimating θ only (with ζ known), following the settings of Jacquier et al.
(1994). In Section 3.2, we compare the extended ABC-PG-cAPF (Algorithm 7) with
the SF-PMwG (Vankov et al., 2019) and PMMH (Andrieu et al., 2010) algorithms for
estimating the SVM and stable distribution parameters (θ, ζ) together.
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3.1 Comparison of cSMC particle Gibbs samplers with a
known stable distribution

We consider the model described in Equation (4) with a second-order stationary log-
volatility process. Since ht conditional on ht−1 follows a log-normal distribution, we

have E(ht) = exp
{

τ
1−ϕ +

σ2
h

2(1−ϕ2)

}
and V ar(ht) = E2(ht)

{
exp

(
σ2
h

1−ϕ2

)
− 1

}
. There-

fore, the (squared) coefficient of variation, CV = V ar(ht)/E
2(ht), can be written as

CV = exp
(

σ2
h

1−ϕ2

)
− 1. Practical ranges of ϕ that have been suggested from empirical

analyses are ϕ ∈ [0.9, 0.98], or more loosely, ϕ ∈ [0.8, 0.995] (Jacquier et al., 1994);
following their simulation study we take ϕ ∈ {0.9, 0.95, 0.98}, CV ∈ {0.1, 1, 10}, and
set E(ht) = 0.0009. Given the values of ϕ, CV, and E(ht), the corresponding values
of τ and σ2

h can be easily computed. Following the setup for the stable distribution
SD(α, β, γ, δ) in Vankov et al. (2019), we hold γ = 1 and δ = 0 fixed throughout.
We consider (α, β) = (1.75, 0.1), (1.7, 0.3), (1.5,−0.3) respectively as three experimen-
tal settings: (1.75, 0.1) gives the least heavy-tailed stable distribution and the least
(right) skewness and is expected to be the easiest to handle; (1.5, -0.3) gives the most
heavy-tailed stable distribution and the most (left) skewness and is expected to be
the hardest to handle; (1.7, 0.3) has heavy-tailedness between that of the above two
cases and the most (right) skewness. Following Kim et al. (1998), we assign a NIG

conjugate prior for θ with a0 = 2.5, b0 = 0.025, µ0 =

[
0
0.9

]
and Λ0 =

[
1 0
0 1

]
; this

choice allows the prior density of θ to cover a fairly wide range, with the prior mean
of ϕ centered at an empirically feasible value of 0.9.

For a given combination of values for ϕ, CV, and (α, β), we generated 100 sim-
ulated datasets, where each dataset is a time series of returns with length T = 350
observations. For each dataset, we ran the three particle Gibbs samplers (ABC-
PG-cBF, ABC-PG-cBFAS, and ABC-PG-cAPF) using N = 250 particles for the
embedded cSMC algorithm and a Gaussian ABC kernel with ϵ = 0.001. For all
sampling algorithms, we discarded the first 2000 iterations as burn-in and took
the 5000 subsequent iterations as the posterior sample. The posterior means are
treated as the Bayes’ estimates for the parameters. The simulation results, sum-
marized by computing the root-mean-squared errors (RMSEs) of the parameter
estimates over the 100 simulated datasets, are presented in Tables 1, 2, and 3 for
(α, β) = (1.75, 0.1), (1.7, 0.3), (1.5,−0.3), respectively.

The numerical results indicate that the proposed ABC-PG-cAPF sampler outper-
forms the corresponding cBF-based ones for most of the scenarios considered. The
Gaussian ABC kernel tends to produce very uneven particle weights and SMC sam-
plers can become hindered by weight degeneracy, especially for more heavy-tailed Zt:
Table 3 for (α, β) = (1.5,−0.3) has the highest RMSEs overall. While ancestor sam-
pling (in cBFAS) is designed to tackle path degeneracy, doing so appears to have
limited effectiveness for mitigating weight degeneracy; in fact, this extra sampling
step may degrade the overall performance of cBFAS compared to cBF in the scenar-
ios considered. With only a moderately sized N , the candidates available for cBFAS
to partially replace the input trajectory at each step may not be of sufficient quality,
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CV ϕ Algorithm RMSE τ RMSE ϕ RMSE σ2
h

10 0.9
ABC-PG-cBF 0.541 0.066 0.328

ABC-PG-cBFAS 0.697 0.084 0.384
ABC-PG-cAPF 0.377 0.047 0.228

10 0.95
ABC-PG-cBF 0.425 0.052 0.209

ABC-PG-cBFAS 0.632 0.078 0.295
ABC-PG-cAPF 0.309 0.038 0.152

10 0.98
ABC-PG-cBF 0.225 0.028 0.095

ABC-PG-cBFAS 0.611 0.077 0.231
ABC-PG-cAPF 0.200 0.024 0.066

1 0.9
ABC-PG-cBF 0.477 0.065 0.128

ABC-PG-cBFAS 0.624 0.086 0.217
ABC-PG-cAPF 0.441 0.060 0.101

1 0.95
ABC-PG-cBF 0.152 0.021 0.045

ABC-PG-cBFAS 0.723 0.100 0.199
ABC-PG-cAPF 0.158 0.021 0.043

1 0.98
ABC-PG-cBF 0.090 0.012 0.017

ABC-PG-cBFAS 0.786 0.109 0.180
ABC-PG-cAPF 0.080 0.011 0.012

0.1 0.9
ABC-PG-cBF 0.499 0.070 0.013

ABC-PG-cBFAS 0.453 0.066 0.165
ABC-PG-cAPF 0.498 0.070 0.008

0.1 0.95
ABC-PG-cBF 0.164 0.023 0.011

ABC-PG-cBFAS 0.702 0.101 0.168
ABC-PG-cAPF 0.159 0.022 0.014

0.1 0.98

ABC-PG-cBF 0.073 0.011 0.016
ABC-PG-cBFAS 0.871 0.125 0.165
ABC-PG-cAPF 0.086 0.013 0.018

Table 1 RMSEs of the SVM parameter estimates using the three
different ABC-based particle Gibbs samplers, based on 100 simulated
datasets with T = 350, N = 250, Zt ∼ SD(1.75, 0.1, 1, 0) and ϵ = 0.001.

such that the stochastic perturbations may introduce extra noise rather than improv-
ing the sampled trajectories. In contrast, the weight tempering strategy of cAPF helps
reduce the variability in the weights, which can lead to more plausible trajectories
being sampled, and in turn improve the accuracy of the parameter estimates. It can
be noted that the advantages of cAPF over cBF may be more pronounced when the
observations are more heavy-tailed (α = 1.5, where weight degeneracy may be most
severe), or when CV is larger (e.g., 10) and ϕ is smaller (e.g., 0.9). This is intuitively
sensible, since cAPF considers the likelihood of the ‘one-step-ahead’ observation; when
the log-volatility process is quite autocorrelated (i.e., CV is small or ϕ is large), this
likelihood tends to be less informative (Johansen and Doucet, 2008). On a single CPU
core, posterior sampling for one simulated dataset requires approximately 6.6 minutes
for ABC-PG-cBF, 7.4 minutes for ABC-PG-cBFAS, and 7.1 minutes for ABC-PG-
cAPF. Hence, the particle Gibbs samplers all have similar computational cost; cBFAS
is slightly more expensive due to its extra ancestor sampling step, and cAPF is slightly
more expensive due to its weight tempering.

Figure 2 shows the estimated posterior densities of each parameter obtained from
each sampling algorithm for each of the 100 simulated datasets, taking the CV = 10,
ϕ = 0.95, and (α, β) = (1.7, 0.3) scenario as an example. In each panel, the average
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CV ϕ Algorithm RMSE τ RMSE ϕ RMSE σ2
h

10 0.9
ABC-PG-cBF 0.576 0.070 0.347

ABC-PG-cBFAS 0.745 0.090 0.415
ABC-PG-cAPF 0.388 0.048 0.237

10 0.95
ABC-PG-cBF 0.426 0.052 0.215

ABC-PG-cBFAS 0.693 0.085 0.327
ABC-PG-cAPF 0.328 0.041 0.157

10 0.98
ABC-PG-cBF 0.250 0.030 0.100

ABC-PG-cBFAS 0.666 0.084 0.252
ABC-PG-cAPF 0.222 0.027 0.073

1 0.9
ABC-PG-cBF 0.515 0.070 0.143

ABC-PG-cBFAS 0.703 0.097 0.248
ABC-PG-cAPF 0.448 0.061 0.100

1 0.95
ABC-PG-cBF 0.197 0.027 0.053

ABC-PG-cBFAS 0.783 0.108 0.219
ABC-PG-cAPF 0.173 0.024 0.051

1 0.98
ABC-PG-cBF 0.134 0.020 0.033

ABC-PG-cBFAS 0.847 0.118 0.198
ABC-PG-cAPF 0.110 0.016 0.019

0.1 0.9
ABC-PG-cBF 0.497 0.070 0.031

ABC-PG-cBFAS 0.564 0.082 0.199
ABC-PG-cAPF 0.494 0.069 0.008

0.1 0.95
ABC-PG-cBF 0.168 0.023 0.023

ABC-PG-cBFAS 0.789 0.114 0.194
ABC-PG-cAPF 0.167 0.023 0.018

0.1 0.98
ABC-PG-cBF 0.117 0.017 0.026

ABC-PG-cBFAS 0.945 0.136 0.189
ABC-PG-cAPF 0.086 0.013 0.018

Table 2 RMSEs of the SVM parameter estimates using the three
different ABC-based particle Gibbs samplers, based on 100 simulated
datasets with T = 350, N = 250, Zt ∼ SD(1.7, 0.3, 1, 0), ϵ = 0.001.

posterior density over the 100 datasets is superimposed by the thick solid line. These
plots further indicate that ABC-PG-cAPF provides more reliable posterior densities
that tend to cluster closer to the truth (red dashed lines) across the simulated datasets;
in contrast, the RMSEs of the other two sampling algorithms are higher due to less
accurate posterior density estimates for some datasets.

Finally in the ABC setting, a smaller ϵ is generally preferred for a better ABC
approximation of the target distribution; however, there is a trade-off as the sampling
algorithms can suffer from increased weight degeneracy when ϵ is very small. For exam-
ple, when we decreased ϵ to 0.0005, the RMSEs of the parameter estimates increased
for all the cSMC algorithms. With the smaller ϵ, the RMSEs of ABC-PG-cBF and
ABC-PG-cBFAS increased notably more than those of ABC-PG-cAPF, which indi-
cates that our proposed sampler is more robust to such weight degeneracy compared
to existing particle Gibbs samplers; see Section S2 in the Supplementary Material for
the detailed results.
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CV ϕ Algorithm RMSE τ RMSE ϕ RMSE σ2
h

10 0.9
ABC-PG-cBF 0.732 0.090 0.474

ABC-PG-cBFAS 1.008 0.123 0.601
ABC-PG-cAPF 0.445 0.056 0.308

10 0.95
ABC-PG-cBF 0.565 0.070 0.332

ABC-PG-cBFAS 0.957 0.118 0.506
ABC-PG-cAPF 0.390 0.049 0.209

10 0.98
ABC-PG-cBF 0.278 0.036 0.169

ABC-PG-cBFAS 0.930 0.118 0.417
ABC-PG-cAPF 0.257 0.032 0.103

1 0.9
ABC-PG-cBF 0.563 0.076 0.181

ABC-PG-cBFAS 0.976 0.135 0.385
ABC-PG-cAPF 0.480 0.065 0.117

1 0.95
ABC-PG-cBF 0.247 0.034 0.082

ABC-PG-cBFAS 1.118 0.155 0.372
ABC-PG-cAPF 0.174 0.024 0.049

1 0.98
ABC-PG-cBF 0.156 0.021 0.049

ABC-PG-cBFAS 1.203 0.168 0.353
ABC-PG-cAPF 0.087 0.013 0.017

0.1 0.9
ABC-PG-cBF 0.543 0.077 0.081

ABC-PG-cBFAS 0.897 0.130 0.336
ABC-PG-cAPF 0.495 0.069 0.012

0.1 0.95
ABC-PG-cBF 0.181 0.026 0.032

ABC-PG-cBFAS 1.090 0.157 0.315
ABC-PG-cAPF 0.165 0.023 0.025

0.1 0.98
ABC-PG-cBF 0.179 0.026 0.051

ABC-PG-cBFAS 1.269 0.183 0.317
ABC-PG-cAPF 0.087 0.013 0.019

Table 3 RMSEs of the SVM parameter estimates using the three
different ABC-based particle Gibbs samplers, based on 100 simulated
datasets with T = 350, N = 250, Zt ∼ SD(1.5,−0.3, 1, 0), ϵ = 0.001.

3.2 Comparison of methods for estimating both SVM and
stable distribution parameters

We now compare our extended ABC-PG-cAPF with the PMMH and SF-PMwG algo-
rithms for estimating both θ and ζ. We take the CV = 1, ϕ = 0.95 scenario for further
investigation following Jacquier et al. (1994) and consider the same three choices of
ζ = (α, β) = (1.75, 0.1), (1.7, 0.3), (1.5,−0.3) as in Section 3.1. For all the algorithms,
we assign the independent uniform priors α ∼ Unif(0.5, 2) and β ∼ Unif(−1, 1) for
the stable distribution parameters ζ, i.e., πζ(ζ) ∝ 1 on (0.5, 2) × (−1, 1). Other set-
tings, namely the prior for θ, length of observations (T = 350), Gaussian ABC kernel
(with ϵ = 0.001), and 2000 burn-in and 5000 sampling iterations, are chosen to be the
same as in Section 3.1.

To complete the specification of Algorithm 6 in our extended ABC-PG-cAPF,
the proposal kernel Q needs to be chosen. Similar to the way the proposal kernel is
constructed in Vankov et al. (2019), our implementation uses an adaptive Metropolis-
Hastings proposal (Haario et al., 2001) for ζ based on the empirical covariance: we let
Q be a Gaussian random walk kernel, so that at iteration k, the proposal ζ∗∗ is drawn
from

Q(ζ∗∗ | ζ[k − 1]) = N (ζ[k − 1],Vk) ,
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Fig. 2 Estimated posterior densities of the parameters τ , ϕ, and σ2
h for each of the 100 simulated

datasets, based on the samples obtained from the three sampling algorithms in the scenario with
CV = 10, ϕ = 0.95, and (α, β) = (1.7, 0.3). In each panel, the thick solid line represents average
posterior density over the 100 datasets. The true values of the parameters are indicated by the red
dashed lines.

where ζ[k − 1] is the draw of ζ from the previous iteration and

Vk =


[
0.2 0
0 0.2

]
if k ≤ I

Cov(ζ[1 : (k − 1)]) +

[
0.01 0
0 0.01

]
if k > I
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where I is the number of burn-in iterations and Cov(ζ[1 : (k − 1)]) is the empirical
covariance matrix of all previous draws of ζ. We run the extended ABC-PG-cAPF
with N = 500 particles.

For comparison, we implemented an ABC variant of the PMMH algorithm intro-
duced in Andrieu et al. (2010), by incorporating an ABC-based bootstrap filter
(ABC-BF) to handle the intractable stable distributions. Our implementation of
PMMH closely follows that described by Vankov et al. (2019), which uses a single
MH step with an adaptive Gaussian kernel to propose (θ, ζ), then approximates the
marginal likelihood via the ABC-BF. In each iteration of SF-PMwG (Vankov et al.,
2019), the parameters are updated in two blocks: (ζ, σ2

h, h0:T ) are updated together
via a MH step, while τ and ϕ are updated via Gibbs steps with the help of closed-
form conditional distributions. The MH update for (ζ, σ2

h, h0:T ) in SF-PMwG uses an
adaptive Gaussian kernel to propose ζ, σ2

h, then runs the ABC-APF (Algorithm 3) to
approximate the marginal likelihood (in the same manner as PMMH) and samples
one particle as the proposed trajectory for h0:T . For τ and ϕ, which have conditional
distributions available, the Gibbs step in SF-PMwG conditions on the (ζ, σ2

h, h0:T )
sampled from the MH step. Further details and algorithmic descriptions of PMMH and
SF-PMwG are provided in Section S3 of the Supplementary Material. We run PMMH
and SF-PMwG with N = 10, 000 particles as suggested in Vankov et al. (2019).

Analogously to Section 3.1, for a given combination of values for (θ, ζ), we generated
100 simulated datasets. For each dataset, we ran the three samplers (ABC-PG-cAPF,
PMMH, and SF-PMwG) as described above. The simulation results are summarized
in Table 4, in terms of the average estimate and RMSE of each parameter over the
100 datasets. Generally, the RMSEs are larger for smaller values of α, especially when
(α, β) = (1.5,−0.3). This is consistent with the results in Section 3.1, since a smaller
α indicates heavier tails and greater variability from the stable distribution, which
makes weight degeneracy and inference more challenging. The results support the
overall efficacy of the extended ABC-PG-cAPF, which has RMSEs smaller than (or
comparable to, in the case of (α, β) = (1.75, 0.1)) those obtained by PMMH and
SF-PMwG, especially for estimating the parameters (α, β) of the stable distribution.
SF-PMwG generally outperforms PMMH (more notably for smaller values of α) with
the help of its ABC-APF, which may handle weight degeneracy better than the ABC-
BF in PMMH. Nevertheless, the performance of SF-PMwG is still dependent on the
quality of its particle marginal likelihood approximation, such that the extended ABC-
PG-cAPF handles these cases more effectively overall.

Furthermore, the time required to run the extended ABC-PG-cAPF on one dataset
using a single CPU core is approximately 14.3 minutes, which is about 20 times faster
than both PMMH and SF-PMwG. The overall computational cost can be mainly
attributed to the embedded SMC algorithm, which is approximately linear in the
particle size N . PMMH and SF-PMwG use a much larger particle size of N = 10, 000,
i.e., 20 times larger than the N = 500 in our extended ABC-PG-cAPF. Therefore,
we also assessed whether PMMH and SF-PMwG can produce reasonable results with
N = 500 instead, i.e., using a similar computational budget as the extended ABC-
PG-cAPF. We found that even for the easiest case of (α, β) = (1.75, 0.1), PMMH
and SF-PMwG failed to produce reasonable estimates with this reduced particle size,
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as presented in Table S4 of the Supplementary Material. This indicates that PMMH
and SF-PMwG require a large N for their marginal likelihood approximations to
be adequate; in contrast, the extended ABC-PG-cAPF can work well with a much
smaller N since its embedded ABC-cAPF only updates the trajectory h0:T and does
not estimate the marginal likelihood.

4 Application: the S&P 500 Index during the
Financial Crisis in 2008

We now apply the extended ABC-PG-cAPF sampler to fit an SVM to the S&P 500
time-series data first introduced in Figure 1. Given the time series of the daily price
(i.e., the average of the open and close price on each day), these daily returns are
computed for the period January 2008 to March 2009. The large fluctuations around
October 2008 indicate the climax of the well-known global financial crisis.

Fig. 3 The left panel presents the daily returns of the S&P 500 index from January 2008 to March
2009. The 2.5% and 97.5% quantiles of the sampled returns are shown with red dashed lines and the
corresponding 95% credible interval for the returns is highlighted in red. The right panel presents the
fitted daily volatility (black line) with a 95% credible interval (red dashed lines); the high volatility
around the climax is well-captured.

We estimated the SVM and stable distribution parameters (θ, ζ) based on these
data, running 2000 burn-in iterations of the extended ABC-PG-cAPF followed by
10000 sampling iterations, using N = 1000 particles and a Gaussian ABC kernel with
ϵ = 0.001, ϵζ = 0.05. We adopt an NIG conjugate prior for θ with a0 = 2, b0 = 0.5,

µ0 =

[
0
0.9

]
and Λ0 =

[
1 0
0 1

]
following the work of Yang et al. (2018) on the same

S&P 500 Index data, and a uniform prior for ζ as in Section 3.2. The Bayes’ estimates
(posterior means) and central 95% credible intervals of the parameters are reported
in Table 5.

The Bayes’ estimate of α = 1.813 is consistent with the heavy-tailedness of the
returns apparent in the Q-Q plot (Figure 1), and similar to the practical range of
α ∈ (1.65, 1.8) for financial data indicated by previous studies (Kabašinskas et al.,
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Parameter Method Estimate RMSE

τ = −0.368
ABC-PG-cAPF -0.341 0.216

PMMH -0.339 0.235
SF-PMwG -0.295 0.205

ϕ = 0.95
ABC-PG-cAPF 0.953 0.030

PMMH 0.954 0.032
SF-PMwG 0.942 0.055

σ2
h = 0.068

ABC-PG-cAPF 0.064 0.066
PMMH 0.058 0.071

SF-PMwG 0.078 0.089

α = 1.75
ABC-PG-cAPF 1.679 0.131

PMMH 1.636 0.236
SF-PMwG 1.704 0.174

β = 0.1
ABC-PG-cAPF 0.070 0.189

PMMH -0.011 0.308
SF-PMwG 0.122 0.276

τ = −0.368
ABC-PG-cAPF -0.352 0.201

PMMH -0.380 0.433
SF-PMwG -0.282 0.256

ϕ = 0.95
ABC-PG-cAPF 0.951 0.028

PMMH 0.948 0.057
SF-PMwG 0.947 0.047

σ2
h = 0.068

ABC-PG-cAPF 0.070 0.068
PMMH 0.076 0.151

SF-PMwG 0.075 0.092

α = 1.7
ABC-PG-cAPF 1.637 0.134

PMMH 1.556 0.246
SF-PMwG 1.619 0.200

β = 0.3
ABC-PG-cAPF 0.227 0.177

PMMH 0.186 0.311
SF-PMwG 0.247 0.286

τ = −0.368
ABC-PG-cAPF -0.382 0.303

PMMH -0.505 0.500
SF-PMwG -0.357 0.396

ϕ = 0.95
ABC-PG-cAPF 0.947 0.042

PMMH 0.926 0.079
SF-PMwG 0.927 0.099

σ2
h = 0.068

ABC-PG-cAPF 0.088 0.122
PMMH 0.303 1.128

SF-PMwG 0.131 0.460

α = 1.5
ABC-PG-cAPF 1.461 0.123

PMMH 1.350 0.265
SF-PMwG 1.370 0.223

β = −0.3
ABC-PG-cAPF -0.249 0.145

PMMH -0.176 0.298
SF-PMwG -0.238 0.233

Table 4 Summary of parameter estimates for (θ, ζ)
where CV=1, ϕ = 0.95, and (α, β) are one of
(1.75, 0.1), (1.7, 0.3), (1.5,−0.3). Three samplers (ABC-
PG-cAPF, PMMH, SF-PMwG) are compared, based on
T = 350, ϵ = 0.001 and 5000 posterior samples. ABC-
PG-cAPF is run with N = 500 particles, while PMMH
and SF-PMwG are run with N = 10, 000 particles.
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2009). While α has a relatively small 95% credible interval, in contrast the inference for
β is highly uncertain; intuitively, the skewness of the stable distribution may contribute
little to the variation of the observed returns compared to the heavy-tailedness. Hence,
it may be difficult to generate precise estimates of β with limited observations.

In the right panel of Figure 3, we plot the fitted daily volatility along with a central
95% credible interval based on the posterior samples {h∗t }Tt=1; the estimated volatility
peaks at the climax of the financial crisis. Lastly, the estimated 95% credible intervals
for the returns are also superimposed on the left panel, which were computed via the
samples generated from lt(rt | h∗t ) for each draw of h∗t at each time t = 1, . . . , T and
indicate a good fit to the data.

Parameter Estimate 95% credible interval
τ -0.307 (-0.680, -0.044)
ϕ 0.966 (0.926, 0.995)
σ2
h 0.098 (0.050, 0.184)
α 1.813 (1.477, 1.987)
β -0.195 (-0.929, 0.328)

Table 5 Estimates and credible intervals of τ , ϕ,

σ2
h, α and β based on fitting an SVM to S&P 500

Index data from January 2008 to March 2009.
The numerical results were obtained from the
ABC-PG-cAPF sampler with N = 1000 and
10000 posterior samples.

5 Conclusion and Discussion

In this paper, we proposed an ABC-based cAPF embedded within a particle Gibbs
sampler for likelihood-free inference of the SVM. Our proposed sampler builds upon
a rich SMC and SVM literature, e.g., the idea of using MCMC for parameter estima-
tion in SVMs (Jacquier et al., 1994), particle MCMC for state space models (Andrieu
et al., 2010), and ABC-based PMCMC for SVM inference with intractable likelihoods
(Vankov et al., 2019). Compared to existing particle Gibbs samplers, the PMMH algo-
rithm, and the SF-PMwG algorithm, the proposed ABC-PG-cAPF sampler produces
more accurate parameter estimates with the help of its weight tempering strategy, as
demonstrated in the simulation study.

Our sampler can be adapted for broader use with different models and setups. First,
if there are any model parameters without closed-form conditional distributions (e.g.,
ϵt chosen to be a t-distribution and thus no conjugacy available for σ2

h), this can be
handled by incorporating an additional block of Metropolis-Hastings updates within
the particle Gibbs sampler. Second, the computation of the tempered weights for cAPF
can be adapted as appropriate to cover the high-density regions of the true importance
weights. For example, if the likelihood involves a stable distribution with 0.5 < α <
1, the Lévy distribution (which corresponds to a stable distribution with α = 0.5)
can be a better choice of approximating distribution than a Cauchy. However, for a
stable distribution with α < 0.5 or other kinds of intractable distributions, alternative
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approximation schemes or numerical methods might be necessary to perform weight
tempering efficiently. While ABC-PG-cAPF is proposed with Model (4) as the focus in
this paper, the computational strategy is not limited to this specific problem and could
be adapted to other SSMs with intractable likelihoods in future work, e.g., stochastic
kinetic models (Owen et al., 2015; Lowe et al., 2023) and models with likelihoods that
follow g-and-k distributions (Rayner and MacGillivray, 2002; Drovandi and Pettitt,
2011).

Supplementary information. The Supplementary Material contains the proof of
Proposition 1 in Section 2.4 and the additional experiments and algorithms (PMMH
and SF-PMwG) described in Section 3. The code and data to replicate the results of
this study are provided in a supplementary .zip file.
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